DAEWOO Matiz: включаем логику



В двух предыдущих статьях, посвященных диагностике двигателей, речь шла, если помните, об автомобиле Daewoo Matiz. Проблема там была сначала в задающем диске, расположенном внутри распределителя зажигания, а затем обнаружился еще и сбой в работе электронного блока управления двигателем.

Как это ни покажется странным, следующий и очень даже интересный случай, о котором я хочу рассказать, также произошел на автомобиле этой же марки и модели. Небольшая разница в том, что это оказался двигатель без «трамблера», с тремя катушками зажигания, по одной на каждый цилиндр. Итак, Daewoo Matiz, год выпуска 2008, трехцилиндровый двигатель F8V, блок управления Sirius D32.

Жалоба клиента, как это иногда бывает, никакой подсказки не дала: вроде бы был удар в заднее крыло, затем автомобиль простоял полгода, затем завели и даже какое-то время ездили. А вот теперь двигатель глохнет в движении. На холостом ходу вроде как даже и ничего, а вот в движении проблемы.

Ладно, хоть что-то. Как выяснилось при осмотре, двигатель "затыкается" и на холостом ходу, если дать газу:

Ну что, проблема, как говорится, имеет место быть. Не будем мудрить, а попробуем просто подключить сканер и посмотреть основные параметры двигателя при работе на холостом ходу:

Что можно сказать, глядя на эти параметры? Во-первых, двигатель прогрет, дроссель закрыт полностью. Во-вторых, давление во впускном коллекторе очень хорошее, значит, никаких подсосов или чего-то подобного нет. Об этом же говорит положение регулятора холостого хода: на большинстве таких моторов оно находится на этом же уровне.

Далее. Напряжение бортовой сети очень хорошее, с генератором явно проблем нет. Хорошо, учтем. Коэффициент коррекции подачи топлива вроде как немного в минусе, но это далеко не катастрофическое значение, да и после окончательного прогрева он может измениться.

Резюмируя, можно сказать, что в общем-то никаких явных проблем на холостом ходу сканером не обнаружено. Да и двигатель работает достаточно ровно. Ну, настолько ровно, насколько это возможно при работе плохо уравновешенного трехцилиндрового мотора.

Что ж, малой кровью обойтись не удалось, придется лезть глубже. И прежде всего открыть Chevrolet TIS и изучить документацию на этот двигатель. Нас интересует схема ЭСУД. В тисе она для удобства разбита на несколько частей. Бегло просмотрев все, выясняем, что данный двигатель оборудован датчиками положения коленчатого вала и распределительного вала. В документации они обозначены как CranKshaft Position (CKP) Sensor – датчик положения коленчатого вала, CaMshaft Position (CMP) Sensor – датчик положения распределительного вала. В тисе содержатся не только электрические схемы, но и схемы расположения датчиков на двигателе (иллюстрации кликабельны):  

Так как звук работы двигателя и вообще его поведение в момент проявления дефекта явно напоминают срыв синхронизации, попробуем подключиться к обоим датчикам мотортестером и оценить их сигнал.

Прежде всего:

  • канал 2, осциллограмма желтого цвета – импульсы синхронизации, соответствующие моментам искрообразования (по сути импульсы искры);
  • канал 1, осциллограмма белого цвета – напряжение датчика положения коленчатого вала;
  • канал 3, осциллограмма зеленого цвета – напряжение на выходе датчика положения распределительного вала.

Начинаем рассуждения. Ну, первый вывод очевиден: проблема есть, и проблема явная. Теперь попробуем включить логику и «допереть» до результата. Итак, поехали.

Моменты искрообразования отмечены красной стрелкой с цифрой 1. Несмотря на очень кривую форму сигнала ДПРВ, искра все-таки есть. Хорошо, учтем.

Осциллограмма ДПРВ отображает импульсы с этого датчика (красная цифра 2). Но на линии нуля явно видны искажения, причем очень характерной формы: как будто горочка (красная цифра 3). Сопоставив их с моментами появления искры, очень легко сделать вывод, что это периоды накопления энергии в катушках зажигания, и такая форма говорит, к сожалению, об отсутствии хорошей «массы». О том, как проверить качество питания и «массы», я подробно рассказывал в одной из статей, но вкратце напомню: эта горка представляет собой падение напряжения на паразитном сопротивлении, попросту говоря, на плохой «массе». Ток в катушках нарастает плавно, и точно в соответствии с ним так же плавно нарастает напряжение.

Установив линейки, убеждаемся, что паразитное падение напряжения составило 0,7 В! Это весьма приличная потеря. Ладно, запомним и идем дальше.

Совсем интересен момент, обозначенный цифрой 4. Это всплеск напряжения. Откуда? Поясню позже, а пока рассмотрим момент на осциллограмме, соответствующий моменту «затыка» двигателя:

Этому моменту предшествовали сильные искажения формы сигнала ДПРВ и линии нуля. Настолько сильные, что в какой-то момент произошло нечто, и искра пропала совсем. Все, двигатель «заткнулся», что и слышно при перегазовке на видео. И опять всплески на осциллограмме ДПРВ (да и ДПКВ тоже)! Такие вещи однозначно говорят о проблеме с «массой», причем настолько серьезной проблеме, что ЭБУ попросту теряет питание и перезагружается. Что и проявляется как «затык» двигателя на несколько секунд.

Рассмотрим еще раз электрическую схему подключения ДПРВ и «массы» ЭБУ (см. рисунки выше). Конечно же, «масса» ДПРВ подключена к блоку, об этом тоже подробно рассказано в одной из статей. А сам блок, если верить схеме, подключен к «массе» двигателя через контакты разъема 3, 33, 63, 67 и 28. Точка подключения, согласно схеме, G106. Отлично! А где она на двигателе?

Обращаемся опять-таки к тису, к рисунку, который мы уже рассматривали. Вот эта точка на двигателе, она расположена под стартером:

Поднимаем автомобиль на подъемнике, и вот оно. Болт «массы» едва прикручен, клемма уже давно окислилась. На фото клемма и место ее крепления уже тщательно очищены:

«Масса» в этом месте давно уже мешала нормальной работе двигателя, а при сильной его вибрации приводила к потере питания ЭБУ. Приведя все в порядок и затянув болт, убеждаемся, что проблема решена.

Но кое-что я припас, как говорится, на десерт. Вернемся чуть назад к нашим осциллограммам и рассмотрим вот этот выброс напряжения:

Откуда он? Смотрим электросхему еще раз:

Питание датчика берется из той же точки, что и питание соленоида продувки адсорбера, обозначенного на схеме как EVAP Canister Purge Solenoid. Так как соленоид – это все-таки катушка, обладающая заметной индуктивностью, то в момент пропадания «массы» на нем возникает всплеск напряжения самоиндукции, аналогично тому, как это происходит в катушках зажигания. Именно поэтому мы и видим на осциллограмме ДПРВ всплеск напряжения до 20 В.

Какова мораль истории? Очень простая. Первое – нужно обязательно иметь под рукой базы данных и пользоваться ими. Второе – мотортестер рулит! Всего лишь сняв осциллку двух датчиков и чуть подумав, мы нашли не самый простой в поиске дефект.