Турбонаддув: теория и практика



Постоянные читатели статей нашей Школы автодиагностики наверняка знают о моем пристрастии к мотортестерам. Это связано прежде всего с тем, что в основном мне приходится работать с подержанными автомобилями, иногда довольно старыми. И чаша весов при диагностике таких автомобилей часто склоняется в сторону мотортестера, а не сканера.

Однако в последние годы происходит невероятное: мотортестер находит применение на достаточно свежих машинах! И возникло это не на пустом месте. Автопроизводители все больше делают из диагностов бездумных роботов, сокращая список переменных в потоке данных из электронного блока управления (ЭБУ). И то, что раньше легко тестировалось сканером, сегодня опять приходится диагностировать при помощи мотортестера.

Далеко за примером ходить не нужно. Автомобиль  Infiniti QX70 30d, оснащенный дизельным мотором V6 3.0 V9X от Renault. У этого автомобиля крайне неинформативная диагностика, и сканером в режиме Data Monitor читаются всего полтора десятка параметров. Приходится опять брать в руки мотортестер. Все это из-за альянса Renault и Nissan, теперь и на японских автомобилях прослеживаются не самые удачные европейские тенденции.

Кстати, о тенденциях. Если вы давно занимаетесь диагностикой двигателей, то наверняка обратили внимание на интересный факт: все больше моторов оснащается турбонаддувом. Ну, на дизельных двигателях он используется достаточно давно, и это оправдано. Однако в последние годы турбонаддув прочно обосновался под капотом бензиновых малолитражек. Почему это произошло? Попробуем ответить на поставленный вопрос.

Прежде всего, цель турбонаддува, как в бензиновых, так и в дизельных двигателях - увеличить цикловое наполнение цилиндров воздухом. А увеличив наполнение воздухом и, соответственно, подачу топлива, можно усилить давление на поршень и получить более высокий крутящий момент и мощность двигателя. С одной стороны, все логично.

А с другой стороны, значительно усложняется конструкция двигателя и заметно снижается его ресурс. Не говоря уже о цене автомобиля: она, конечно же, растет.

Так в чем же «фишка» применения турбонаддува на бензиновых двигателях?

В ходе исследований выяснилось, что полное открытие дросселя используется водителями крайне редко. Возникает интересная ситуация: в режимах частичных нагрузок, а они при движении автомобиля самые распространенные, наддува практически нет. Водитель вынужден открывать дроссель на больший угол, а это приводит к уменьшению насосных потерь. Как следствие, увеличивается КПД двигателя и уменьшается выброс СО2.

Если рассматривать процесс внедрения турбонаддува с точки зрения борьбы за снижение эмиссии СО2, то оказывается, что турбированный мотор выгоднее. Его габариты и масса снижаются, но мощность при этом остается на прежнем уровне. Сегодня с двигателя объемом 1.4 л, оснащенного наддувом, снимают такую же мощность, что и ранее с атмосферного двигателя объемом 2 л.

Одним словом, внедрение турбонаддува обусловлено не повышением потребительских качеств автомобиля, а борьбой за снижение эмиссии диоксида углерода. У атмосферных моторов совершенно другая кривая крутящего момента, наиболее приемлемая для комфортного вождения. Но конечный потребитель, как правило, дилетант, и живет по рекомендациям маркетологов.

Систем турбонаддува разработано великое множество. Безусловно, для бензиновых и для дизельных двигателей эти системы различаются конструктивно, хотя бы в силу очевидной разницы этих моторов. Но все системы можно разделить как минимум на две большие группы, и критерием этого разделения будет управление давлением наддува.

Управление давлением наддува

Самое главное, что должен знать и понимать диагност, это принцип управления давлением наддува. По большому счету на сегодняшний день здесь можно выделить два типа систем:

  • регулирование с применением байпасного канала Waste Gate Turbine, WGT;
  • регулирование путем изменения геометрии направляющих лопаток Variable Geometry Turbine, VGT.

Рассмотрим вкратце обе конструкции.

Waste Gate Turbine

Для управления наддувом здесь используется непосредственно само давление наддува, создаваемое колесом компрессора. Это давление подается на электропневматический преобразователь давления (ЭПД), который смешивает давление наддува с атмосферным давлением. Иначе говоря, в выходной трубке ЭПД давление находится в диапазоне между атмосферным давлением и избыточным давлением, создаваемым турбиной.

Каково будет значение давления в выходной трубке ЭПД, зависит от скважности управляющих импульсов, подаваемых электронным блоком управления. Итоговое давление воздействует на мембрану клапана регулирования давления наддува, приоткрывая либо наоборот, закрывая байпасный канал, тот самый Waste Gate. В результате меняется поток газов через турбинное колесо, и соответственно, производительность компрессора.

Схема с WGT используется преимущественно на бензиновых двигателях.

Variable Geometry Turbine

Такая схема используется преимущественно на дизельных двигателях.

Принцип регулирования здесь заложен очень простой и остроумный. Заключается он в поворачивании лопаток, направляющих поток отработавших газов на лопасти турбинного колеса. Лопатки соединены в единую систему с помощью кольца, в свою очередь кольцо перемещается под воздействием специального привода. Характеристика регулирования гораздо более гибкая, чем у систем с Waste Gate.

Если лопатки максимально сведены, то отработавшие газы поступают на периферию крыльчатки турбинного колеса, на самый его край, вызывая максимальную эффективность работы турбины с точки зрения рычага приложения силы.

И наоборот, для ограничения давления наддува лопатки разводят, поток газов направляется к центру турбинного колеса, минимально воздействуя на турбину. Скорость вращения турбокомпрессора уменьшается, давление наддува падает.

Перемещение лопаток осуществляется двумя способами:

  • Вакуумным приводом. Таких двигателей большинство из-за низкой стоимости и простоты привода;
  • Электрическим приводом.

Диагностика электрического привода не представляет собой больших сложностей. Как правило, при любых проблемах с этим типом привода в ЭБУ двигателя заносится соответствующий код неисправности. По сути диагностика сводится к проверке качества питания и массы мощной лампой, так как привод потребляет весьма большой ток.

Наибольшую сложность представляет собой вакуумный привод. Для управления положением лопаток используется вакуумный актюатор. Он использует вакуум, создаваемый вакуумным насосом двигателя.

Разберем логику работы такой системы. Начнем с ситуации, когда зажигание выключено и автомобиль неподвижен. Преобразователь давления обесточен и находится в таком положении, что в полости вакуумного привода присутствует атмосферное давление. Чтобы сдвинуть привод с места, нужен вакуум, которого пока что нет. Поэтому лопатки системы VGT разведены, что соответствует минимальному давлению наддува.

Как только двигатель запустили, в магистрали появился вакуум, а на обмотку преобразователя давления из ЭБУ подается ШИМ-сигнал с коэффициентом заполнения 70%..90%.

В полости вакуумного привода появляется разрежение примерно 50..60 кПа. Этого достаточно, чтобы вакуумный привод полностью свел управляющие лопатки, что соответствует максимальному давлению наддува. В итоге даже при работе двигателя на холостом ходу турбокомпрессор уже «дует».

Если частота вращения коленчатого вала растет, то растет и давление наддува. ЭБУ контролирует значение давления наддува, и, когда оно приближается к заданному, начинает разводить лопатки. Для этого на ЭПД подается ШИМ-сигнал с меньшим коэффициентом заполнения, и часть вакуума из полости вакуумного привода стравливается в атмосферу.

При диагностике такой системы главным образом используется вакуумметр. Проверяемая цепь выглядит так: вакуумный насос – преобразователь давления – вакуумный привод лопаток.

Первым шагом проверяется исправность вакуумного насоса. В магистраль между ЭПД и вакуумным насосом устанавливается вакуумметр. При исправном вакуумном насосе в этой точке разрежение составит 80 кПа или более. Это вакуум, создаваемый насосом.

Вторым шагом вакуумметр подключается к магистрали между ЭПД и вакуумным приводом. Здесь разрежение при работе двигателя на холостом ходу должно быть примерно 50..60 кПа.

Описанная ситуация будет наблюдаться при полностью исправной и герметичной системе. При неисправности ЭПД или негерметичности магистрали нужно анализировать значение разрежения и выстраивать дальнейшую логическую цепь поиска.

Работаем Автоскопом

А теперь давайте вернемся к разговору о методиках диагностики турбонаддува двигателя автомобиля Infiniti QX70. Так как выводимых на сканер параметров недостаточно для нормальной работы, можно проверить функционирование ЭПД при помощи мотортестера. В качестве вакуумметра будем использовать датчик разрежения, а скважность будем наблюдать по осциллограмме ШИМ-сигнала. Вот так это выглядит под капотом:

Один щуп подключим к управляющему ШИМ-сигналу с ЭБУ, это канал 1. Датчик разряжения устанавливаем на выходную трубку преобразователя давления, канал 2.  Вначале пусть двигатель поработает на холостом ходу, затем выжмем «в пол» педаль акселератора.

Пару слов обязательно следует сказать о ШИМ-сигнале, который мы наблюдаем на осциллограмме. Так как управление преобразователем давления идет путем подключения одного из выводов его обмотки к массе, активная фаза ШИМ-сигнала соответствует низкому уровню сигнала.

Обратимся к осциллограмме. Это участок, соответствующий холостому ходу:

Скважность ШИМ-сигнала составила 76%, а формируемое преобразователем разрежение 0,6 бар. Лопатки механизма VGT максимально сведены. Теперь нажмем на педаль акселератора:

Скважность снизилась до 29%, а значение разрежения, в свою очередь, до 0,18 бар. Лопатки разведены, чтобы снизить давление наддува. А вот так выглядит осциллограмма, если ее максимально сжать по горизонтали:

Отлично видно, как ЭБУ, меняя коэффициент заполнения ШИМ-сигнала, изменяет величину разряжения на вакуумном приводе VGT.

Следует отметить, что ЭПД – пожалуй, самое слабое звено системы турбонаддува и выходит из строя с завидной регулярностью.

Разумеется, в рамках одной статьи невозможно охватить все существующие конструкции систем турбонаддува, описать методики их диагностики и типичные дефекты. Мы рассмотрели лишь диагностику вакуумного привода системы VGT с применением мотортестера.

Вся информация о диагностике систем турбонаддува содержится в обучающем курсе нашей Школы, который так и называется, «Диагностика турбонаддува». Изучите его!

Дмитрий Чекмарев, Алексей Пахомов